SHIV NADAR UNIVERSITY

I. Course Title: Structural Dynamics

II. Course Code: CED314

III. Course Credits (L:T:P): 3 (3:0:0)

IV. Total Contact Hours/Batch/Week (L:T:P): 3:0:0

V. No. of Batches: 1

VI. Course Type: Major Elective/UWE

VII. Prerequisite: Engineering Mechanics

VIII. Course Coordinator/Instructor: Dr. Jagabandhu Dixit

IX. School/Department: Civil Engineering

X. Disciplines to which the course may be of interest: Civil Engineering and Mechanical Engineering

XI. Course Objectives:

- To discuss the theory of structural response to dynamic loads and to understand and appreciate the importance of vibrations
- To appreciate the need and importance of dynamic analysis in structural and mechanical designs
- To determine the response of SDOF and MDOF systems (with and without damping) due to free vibrations, harmonic vibrations, and arbitrary excitations
- Students will learn to compute the dynamic response of structural systems under dynamic loads such as blast and earthquake excitations

XII. Course Content:

- Fundamentals of vibration
- Dynamic equilibrium of structures
- Formulation of dynamic models for discrete and continuous structures
- Response of single degree of freedom systems to periodic and non-periodic excitations
- Response spectra
- Response of two degree of freedom systems
- Response of multi-degree of freedom systems
- Response of continuous systems
- Random Vibrations

XIII. Text Books:

1. J. L. Humar, Dynamics of Structures, CRC Press, 2012

2. S. S. Rao, Mechanical Vibrations, Prentice Hall, 2010

XIV. Reference Books:

- 1. R. W. Clough and J. Penzien, Dynamics of Structures, CBS, 2015
- 2. A. K. Chopra, Dynamics of Structures: Theory and Applications to Earthquake Engineering, Pearson, 2007
- 3. P. Paultre, Dynamics of Structures, Wiley, 2011
- 4. S. G. Kelly and S. K. Kudari, Mechanical Vibrations, TMH, 2010
- 5. W. J. Palm, Mechanical Vibration, Wiley India, 2013
- 6. W. T. Thomson and M. D. Dahleh, Theory of Vibration with Applications, Prentice Hall, 1997
- 7. M. Paz and W. Leigh, Structural Dynamics: Theory and Computation, Springer, 2013

XV. Assessment Scheme:

Quizzes – 30% (2 quizzes @ 15% each)

Mid Semester Examination – 30%

Final Examination – 40%

Students must score above 40% to pass the course.